Páginas

mi presentacion

lunes, 6 de mayo de 2013

sistema de frenos

 SISTEMA DE FRENOS


El sistema de frenos está diseñado para que a través del funcionamiento de sus componentes se pueda detener el vehículo a voluntad del conductor.
La base del funcionamiento del sistema principal de frenos es la transmisión de fuerza a través de un fluido que amplia la presión ejercida por el conductor, para conseguir detener el coche con el mínimo esfuerzo posible.
Las características de construcción de los sistemas de frenado se han de diseñar para conseguir el mínimo de deceleración establecido en las normas.
El sistema de frenos se constituye por dos sistemas:
1.- El sistema que se encarga de frenar el vehículo durante su funcionamiento normal (funcionamiento hidráulico).
2.-El sistema auxiliar o de emergencia que se utilizará en caso de inmovilización o de fallo del sist.principal (funcionamiento mecánico).
Componentes del sistema de frenado
• Pedal de freno: Pieza metálica que transmite la fuerza ejercida por el conductor al sist.hidráulico. Con el pedal conseguimos hacer menos esfuerzo a la hora de transmitir dicha fuerza. El pedal de freno forma parte del conjunto “ pedalera ”, donde se sitúan 2 o 3 palancas de accionamiento individual que nos permiten manejar los principales sistemas del vehículo.
• Bomba de freno: Es la encargada de crear la fuerza necesaria para que los elementos de fricción frenen el vehículo convenientemente. Al presionar la palanca de freno, desplazamos los elementos interiores de la bomba, generando la fuerza necesaria para frenar el vehículo; Básicamente, la bomba es un cilindro con diversas aperturas donde se desplaza un émbolo en su interior, provisto de un sistema de estanqueidad y un sistema de oposición al movimiento, de tal manera que, cuando cese el esfuerzo, vuelva a su posición de repose.
Los orificios que posee la bomba son para que sus elementos interiores admitan o expulsen líquido hidráulico con la correspondiente presión.
• Canalizaciones: Las canalizaciones se encargan de llevar la presión generada por la bomba a los diferentes receptores, se caracterizan por que son tuberías rígidas y metálicas, que se convierten en flexibles cuando pasan del bastidor a los elementos receptores de presión. Estas partes flexibles se llaman “ latiguillos “ y absorben las oscilaciones de las ruedas durante el funcionamiento del vehículo. El ajuste de las tuberías rígidas o flexibles se realiza habitualmente con acoplamientos cónicos, aunque en algunos casos la estanqueidad se consigue a través de arandelas deformables (cobre o aluminio).
• Bombines (frenos de expansión interna): Es un conjunto compuesto por un cilindro por el que pueden desplazarse uno o dos pistones, dependiendo de si el bombín es ciego por un extremo o tiene huecos por ambos lados (los dos pistones se desplazan de forma opuesta hacia el exterior del cilindro.
Los bombines receptores de la presión que genera la bomba se pueden montar en cualquiera de los sistemas de frenos que existen en la actualidad.
Tipos de Sistemas de frenos:
En la actualidad, los dos grandes sistemas que se utilizan en los conjuntos de frenado son: frenos de disco (contracción externa) y frenos de tambor (expansión interna).
Todos los conjuntos de frenado sean de disco o de tambor tienen sus elementos fijos sobre la mangueta del vehículo, a excepción de los elementos que le dan nombre y que son sobre los que realizamos el esfuerzo de frenado (estos elementos son solidarios a los conjuntos de rueda a través de pernos o tornillos).
               CARACTERISTICAS DEL FRENO DE DISCO.

• Mayor refrigeración.
• Montaje y funcionamiento sencillo.

• Piezas de menor tamaño para la misma eficacia.

CARACTERISTICAS DEL FRENO DE TAMBOR.
 
• Mayor eficacia (mayor superficie)
• Refrigeración escasa.
• Sistema más complejo.
Frenos de tambor: Este tipo de frenos se utiliza en las ruedas traseras de algunos vehículos. Presenta la ventaja de poseer una gran superficie frenante; sin embargo, disipa muy mal el calor generado por la frenada.
Los frenos de tambor están constituidos por los siguientes elementos:
o Tambor unido al buje del cual recibe movimiento.
o Plato portafreno donde se alojan las zapatas que rozan con dicho tambor para frenar la rueda.
o Sistema de ajuste automático.
o Actuador hidráulico.
o Muelles de recuperación de las zapatas.
Frenos de disco: Utilizado normalmente en las ruedas delanteras y en muchos casos también en las traseras. Se compone de:
o Un disco solidario al buje del cual toma movimiento, pudiendo ser ventilados o normales, fijos o flotantes y de compuestos especiales.
o Pinza de freno sujeta al porta pinzas, en cuyo interior se aloja el bombín o actuador hidráulico y las pastillas de freno sujetas de forma flotante o fija.
Freno de mano o de estacionamiento:
Son los conjuntos que bloquean el vehículo cuando esta parado o que permiten una frenada de emergencia en caso de fallo en el sistema de frenado normal.
Su funcionamiento es habitualmente mecánico, teniendo que realizan un esfuerzo sobre una palanca para el tensado del cable que bloquea las ruedas.
Purgado de un circuito de frenos:
Todo circuito hidráulico para su funcionamiento necesita funcionar sin aire. Cuando se realiza cualquier sustitución de un elemento hidráulico, es necesario la purgación del circuito. Dicha operación consiste en extraer todo el aire del circuito para dejar simplemente liquido hidráulico.
PROCESO DE PURGA
• Sist. Automático:
Consiste en colocar sobre el depósito una fuente de presión que empujará el liquido hacia los elementos de bombeo. Con este sistema el único trabajo a realizar es abrir cada purgador de los elementos de bombeo hasta verificar que el liquido sale libre de burbujas, y en caso de cambio de liquido, apreciaremos la diferencia entre el nuevo y el usado.

• Sist. Manual:
Para el purgado manual es necesario la intervención de dos personas. La primera persona se sentará en el asiento del conductor y con el motor en marcha realizara una serie de presiones de forma continuada con todo el recorrido del
pedal. Una vez realizado dichas presiones el conductor debe mantener constante la presión del pedal, y con dicha presión, la segunda persona encargada de purgar el circuito abrirá y cerrara el purgador varias veces hasta que el liquido sea homogéneo (sin aire). Se cerraré el purgador, y si es necesario se solicitara a la primera persona que vuelva a presionar varias veces el pedal.
FUNCIONAMIENTO DE LOS FRENOS
Los frenos detienen el automóvil al presionar un material de alta fricción (pastillaso balatas) contra los discos o los tambores de hierro atornillados a la rueda, y quegiran con ella. Esta fricción reduce la velocidad del automóvil hasta detenerlo.Hay dos tipos de frenos: de disco y de tambor. Los frenos de disco funcionancuando las pastillas presionan ambos lados del disco. Los de tambor presionan lasbalatas contra lacara interna del tambor. Los frenos de disco son más eficaces,porque su diseño permite una mayor disipación del calor por el aire. A su vezexisten diferentes sistemas de frenado, el más común y utilizado es el sistema deantibloqueo de frenos, mejor conocido como ABS. La mayoría de los automóvilestienen frenos delanteros de disco y frenos traseros de tambor.
.- Sistema de frenos.
Cuando las pastillas o balatas rozan contra el disco o el tambor, se genera calor.Si éste no se disipa rápidamente, los frenos se sobrecalientan y dejan defuncionar. A este fenómeno se le llama cristalización de balatas.Los frenos delanteros producen 80% de la potencia de frenado del automóvil, ypor ello, son más susceptibles al sobrecalentamiento que los traseros. La mayoríade los automóviles tienen frenos delanteros de disco porque al enfriarse por elaire, son menos propensos a la cristalización de las balatas.El freno de estacionamiento, que sirve para mantener inmóvil al automóvil, es unsistema mecánico de palancas y cables conectado a los frenos traseros. Un pedalo una palanca de mano acciona los frenos y un retén de engrane los sujeta. Unaperilla o botón libera este sector y libera los frenos.

 FRENOS DE DISCO

El freno de disco consiste en un disco de hierro fundido o rotor que gira con la
rueda, y una pinza o mordaza (caliper) montada en la suspensión delantera, que
presiona las pastillas de fricción (balatas) contra el disco.
La mayoría de los frenos de disco tienen pinzas corredizas. Se montan de
modo que se puedan correr unos milímetros hacia ambos lados. Al pisar el pedal
del freno, la presión hidráulica empuja un pistón dentro de la pinza y presiona una
pastilla contra el rotor. Esta presión mueve toda la pinza en su montaje y jala
también la otra pastilla contra el rotor.
 Frenos de Disco
Este sistema de frenado tiene las siguientes ventajas:
1. No se cristalizan las balatas, ya que se enfrían rápidamente
2. Cuando el rotor se calienta y se dilata, se hace más grueso, aumentando la
presión contra las pastillas
3. Tiene un mejor frenado en condiciones adversas, cuando el rotor desecha
agua y polvo por acción centrífuga
Por otra parte, las desventajas de los frenos de disco, comparados con los de
tambor, son que no tienen la llamada acción de servo o de aumento de potencia, y
sus pastillas son más pequeñas que las zapatas de los frenos de tambor, y se
gastan más rápido.
PARTES DEL FRENO DE DISCO
1. Pinza (mordaza o caliper)
2. Disco o rotor de freno
3. Pastilla de freno (balata)
4. Cubierta del pistón
Cubo (maza) de la rueda
5. Cubrepolvo
6. Pasador de deslizamiento de la pinza
7. Ranuras de ventilación
8. Válvula de purga (purgador)
9. Manguera de frenos
SISTEMAS ANTIBLOQUEO DE FRENOS (ABS)
Un sistema de frenado antibloqueo (ABS) controla automáticamente la presión dellíquido de frenos, evitando que las ruedas se bloqueen cuando se ejerce excesivapresión sobre el pedal, generalmente en situaciones de alto riesgo, optimizando elfuncionamiento del sistema y permitiendo al conductor, al mismo tiempo, mantenerla estabilidad y control del vehículo.
Las siglas que lo identifican provienen de su denominación en idioma ingles:
Antilock Brake System. Algunos autores españoles han castellanizado la acepción,
denominándolos SFA (Sistema de Frenos Antibloqueo). Se lo suele calificar como
sistema reactivo, pues funciona reaccionando frente a una o más ruedas
bloqueadas.
- Sistema ABS
¿ Por qué el sistema ABS es benéfico?
La primer ventaja a destacar es que los sistemas antibloqueo permiten que el autose detenga en distancias más cortas. Esto se explica porque al mejorar el contactoneumático-suelo, se mantiene un mayor coeficiente de rozamiento y, como consecuencia, se logra una mayor eficiencia de frenado. Sobre pavimento húmedo, el sistema permite que el agua drene por las estrías y no se forme la cuña de agua que caracteriza el hidroplaneo (aquaplanning). La segunda mejora, pero no menos importante, se pone de manifiesto cuando, en situaciones extremas, los conductores ejercen la máxima presión posible sobre el pedal de freno.
En vehículos provistos de sistemas estándar de frenado, es común que durante una frenada de pánico, sobre pavimento seco, las ruedas delanteras se bloqueen. Cuando la calzada está mojada o resbaladiza, ese riesgo aumenta significativamente, especialmente a velocidades altas o cuando el dibujo de los
neumáticos se encuentra desgastado.
Cuando esto ocurre, el conductor pierde el control del vehículo, que no respondeal giro del volante y se desliza en la dirección y sentido que llevaba al iniciarse el bloqueo.

miércoles, 1 de mayo de 2013

sistema de inyecion


SISTEMA DE INYECCION

Este es un sistema que reemplaza el carburador en los motores a gasolina, su introducción se debió a un aumento en las exigencias de los organismos de control del medio ambiente para disminuir las emisiones de los motores.
Su importancia radica en su mejor capacidad respecto al carburador para dosificar el combustible y crear un mezcla aire / combustible, muy próxima a la estequiométrica (14,7:1 para la gasolina), lo que garantiza una muy buena combustión con reducción de los porcentajes de gases tóxicos a la atmósfera. La relación estequiométrica es la proporción exacta de aire y combustible que garantiza una combustión completa de todo el combustible.

La función es la de tomar aire del medio ambiente, medirlo e introducirlo al motor, luego de acuerdo a esta medición y conforme al régimen de funcionamiento del motor, inyectar la cantidad de combustible necesaria para que la combustión sea lo más completa posible.
Consta de fundamentalmente de sensores, una unidad electrónica de control y actuadores o accionadores.
El funcionamiento se basa en la medición de ciertos parámetros de funcionamiento del motor, como son: el caudal de aire, la temperatura del aire y del refrigerante, el estado de carga (sensor PAM), cantidad de oxígeno en los gases de escape (sensor EGO o Lambda), revoluciones del motor, etc., estás señales son procesadas por la unidad de control, dando como resultado señales que se transmiten a los accionadores (inyectores) que controlan la inyección de combustible y a otras partes del motor para obtener una combustión mejorada.
 El sensor PAM (Presión absoluta del Múltiple) indica la presión absoluta del múltiple de admisión y el sensor EGO (Exhaust Gas Oxigen) la cantidad de oxígeno presente en los gases de combustión.
Este sistema funciona bien si a régimen de funcionamiento constante se mantiene la relación aire / combustible cercana a la estequiométrica, esto se puede comprobar con un análisis de los gases de combustión, pero al igual que los sistemas a carburador, debe proveer un funcionamiento suave y sin interrupciones en los distintos regímenes de marcha.
Estos sistemas tienen incorporado un sistema de autocontrol o autodiagnóstico que avisa cuando algo anda mal, además existe la posibilidad de realizar un diagnóstico externo por medio de scanners electrónicos que se conectan a la unidad de control de inyección y revisan todos los parámetros, indicando aquellos valores que estén  fuera de rango.
La detección de fallas debe realizarla personal especializado en estos sistemas y deben contar con herramientas electrónicas de diagnóstico también especiales para cada tipo de sistema de inyección.
La reparación de estos sistemas se limita al reemplazo de los componentes fallados, generalmente los que el diagnóstico electrónico da como defectuosos.
Los sistemas de inyección electrónicos no difieren de los demás, respecto a las normas de seguridad ya que manipula combustible y/o mezclas explosivas. Lo mismo para el cuidado del medio ambiente, se debe manipular con la precaución de no producir derrames de combustible. 

caja de cambios automaticas

 Cajas de cambio automáticas

El cambio automático es un sistema de transmisión que es capaz por si mismo de seleccionar todas las marchas o relaciones sin la necesidad de la intervención directa del conductor. El cambio de una relación a otra se produce en función tanto de la velocidad del vehículo como del régimen de giro del motor, por lo que el conductor no necesita ni de pedal de embrague ni de palanca de cambios. El simple hecho de pisar el pedal del acelerador provoca el cambio de relación conforme el motor varía de régimen de giro. El resultado que aprecia el conductor es el de un cambio cómodo que no produce tirones y que le permite prestar toda su atención al tráfico. Por lo tanto el cambio automático no sólo proporciona más confort, sino que aporta al vehículo mayor seguridad activa.
Los elementos fundamentales que componen la mayoría de los cambios automáticos actuales son:
  • un convertidor hidráulico de par que varía y ajusta de forma automática su par de salida, al par que necesita la transmisión.
  • un tren epicicloidal o una combinación de ellos que establecen las distintas relaciones del cambio.
  • un mecanismo de mando que selecciona automáticamente las relaciones de los trenes epicicloidales. Este sistema de mando puede ser tanto mecánico como hidráulico, electrónico o una combinación de ellos.
Precisamente el control electrónico es la mayor innovación que disponen los cambios automáticos actuales dando al conductor la posibilidad de elegir entre varios programas de conducción (económico, deportivo, invierno) mediante una palanca de selección, llegando actualmente a existir sistemas de control que pueden seleccionar automáticamente el programa de cambio de marchas más idóneo a cada situación concreta de conducción.
Entre los datos que utilizan estos sistemas para sus cálculos se encuentran, la frecuencia con que el conductor pisa el freno, la pendiente de la carretera, el numero de curvas de la misma, etc.



Antes de estudiar el funcionamiento de la caja de cambios automática, hay que explicar de forma individual, los elementos básicos que la forman.

 Funcionamiento
 

Al girar la bomba accionada directamente por el movimiento del cigüeñal, el aceite se impulsa desde la rueda de bomba hasta la rueda turbina. A la salida de ésta el aceite tropieza con los alabes del reactor que tienen una curvatura opuesta a los de las ruedas de bomba y turbina. Esta corriente de aceite empuja al reactor en un giro de sentido contrario al de la bomba y la turbina. Como el reactor no puede realizar ese giro ya que está retenido por la rueda libre, el aceite se frena y el empuje se transmite a través del aceite sobre la bomba. De esta forma mientras exista diferencia de velocidad de giro entre la bomba y la turbina el momento de giro (par) será mayor en la turbina que en la bomba. El par cedido por la turbina será pues la suma del transmitido por la bomba a través del aceite y del par adicional que se produce por reacción desde el reactor sobre la bomba y que a su vez es transmitido de nuevo sobre la turbina. Cuanto mayor sea la diferencia de giro entre turbina y bomba mayor será la diferencia de par entre la entrada y la salida del convertidor, llegando a ser a la salida hasta tres veces superior.
Conforme disminuye la diferencia de velocidad va disminuyendo la desviación de la corriente de aceite y por lo tanto el empuje adicional sobre la turbina con lo que la relación de par entre salida y entrada va disminuyendo progresivamente

.
Cuando las velocidades de giro de turbina e impulsor se igualan, el reactor gira incluso en su mismo sentido sin producirse ningún empuje adicional de forma que la transmisión de par no se ve aumentada comportándose el convertidor como un embrague hidráulico convencional. A esta situación se le llama "punto de embrague"

Engranaje planetario
También llamado "engranaje epicicloidal", son utilizados por las cajas de cambio automáticas. Estos engranajes están accionados mediante sistemas de mando normalmente hidráulicos o electrónicos que accionan frenos y embragues que controlan los movimientos de los distintos elementos de los engranajes.
La ventaja fundamental de los engranajes planetarios frente a los engranajes utilizados por las cajas de cambio manuales es que su forma es mas compacta y permiten un reparto de par en distintos puntos a través de los satélites, pudiendo transmitir pares mas elevados.

Si quieres ver como funciona un engranaje planetario haz click aquí.
En el interior (centro), el planeta gira en torno de un eje central.
Los satélites engranan en el dentado del piñón central. Además los satélites pueden girar tanto en torno de su propio eje como también en un circuito alrededor del piñón central.
Los satélites se alojan con sus ejes en el portasatélites
El portasatélites inicia el movimiento rotatorio de los satélites alrededor del piñón central; con ello, lógicamente, también en torno del eje central.
La corona engrana con su dentado interior en los satélites y encierra todo el tren epicicloidal. El eje central es también centro de giro para la corona.



Estos tres componentes (planeta, satélites y corona) del tren epicicloidal pueden moverse libremente sin transmitir movimiento alguno, pero si se bloquea uno de los componentes, los restantes pueden girar, transmitiendose el movimiento con la relación de transmisión resultante según la relación existente entre sus piñones. Si se bloquean dos de los componentes, el conjunto queda bloqueado, moviendose todo el sistema a la velocidad de rotación recibida por el motor.

Las relaciones que se pueden obtener en un tren epicicloidal dependen de si ante una entrada o giro de uno de sus elementos existe otro que haga de reacción. En función de la elección del elemento que hace de entrada o que hace de reacción se obtienen cuatro relaciones distintas que se pueden identificar con tres posibles marchas y una marcha invertida. El funcionamiento de un tren epicicloidal es el siguiente:
  • 1ª relación: si el movimiento entra por el planetario y se frena la corona, los satélites se ven arrastrados por su engrane con el planetario rodando por el interior de la corona fija. Esto produce el movimiento del portasatélites. El resultado es una desmultiplicación del giro de forma que el portasatélites se mueve de forma mucho más lenta que el planetario o entrada.

  • 2ª relación: si el movimiento entra por la corona y se frena el planetario, los satélites se ven arrastrados rodando sobre el planetario por el movimiento de la corona. El efecto es el movimiento del portasatélites con una desmultiplicación menor que en el caso anterior.

  • 3ª relación: si el movimiento entra por el planetario y, la corona o el portasatélites se hace solidario en su movimiento al planetario mediante un embrague entonces todo el conjunto gira simultáneamente produciéndose una transmisión directa girando todo el conjunto a la misma velocidad que el motor.

  • 4ª relación: si el movimiento entra por el planetario y se frena el portasatélites, se provoca el giro de los planetarios sobre su propio eje y a su vez estos producen el movimiento de la corona en sentido contrario, invirtiendose el sentido de giro y produciéndose una desmultiplicación grande.